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SUMMARY

Wind shear, the variation of horizontal atmospheric winds with altitude,
has been identified as a causative factor in several airplane accidents and may
have been a contributing factor in others. Consequently, wind shear and its
effect on aircraft have become the subjects of research. This study extends
past work and concentrates on longitudinal motion. The airplane is represented
by the three-degree-of-freedom equations for longitudinal motion. Because
stability and control problems occur only if the wind shear parameter o,
exceeds 1, all wind shears used in this study produced a value of 0o, greater
than 1. Previous investigations have shown that wind shear has little effect
on the short-period mode for the type of airplanes used in this study. The u
stability derivatives (derivatives with respect to perturbation velocity) were
varied to determine the effect of changes in their magnitudes on the stability
of the long-period mode in wind shear. It was found that increases in the
pitching-moment derivative M,; and decreases in the vertical-force deriva-
tive 2, made the airplane more stable in wind shear. During the study of the
u derivatives, a wind shear tolerance factor was developed, which is a function
of the basic stability derivatives of the airplane. If this factor is greater
than 1, the airplane is stable in positive wind shear.

INTRODUCTION

Wind shear, the vertical (altitude) variation of horizontal wind, has been
a causative factor in many airplane accidents (refs. 1 and 2). Wind shears can
occur at any altitude. During midcourse flight, when the airplane is at high
altitude, an encounter with wind shear poses little danger to the airplane.
However, during take—-off and landing operations, when the airplane is close to
the ground, an accident may occur before the airplane can recover from a wind
shear encounter. Because low—altitude encounters represent a hazardous condi-
tion, this investigation was restricted to the study of the problems of wind
shear encounters on landing approach below an altitude of 130 meters.

References 3, 4, and 5 give the results of general studies of wind shear
for descending and climbing flight near the ground. The wind shear param-
eter 0y, introduced in references 3 and 4 and also used in this study, is a
measurement of the severity of the wind shear. Since a wind shear parameter
greater than 1 produces unstable conditions, gradients for the study were
selected to give oy > 1.

The principal thrust of this study was to examine the role the speed
stability derivatives play in the interaction of the airplane and wind shear.
In addition, the use of airspeed control systems to control an airplane during
a wind shear encounter was further investigated.

The equations of motion are derived in appendix A. A program written for
the Hewlett Packard HP-67 programmable pocket calculator, which represents an




improvement on program 1 of reference 6, is given in appendix B. The use of
this calculator does not constitute an endorsement of the product by the
National Aeronautics and Space Administration.

SYMBOLS

A aspect ratio

a),827.441275 coefficients of 3 x 3 matrix (egs. (A8)) representing
linearized equations of motion for stability; defined
in equations (A9)

by ,b2see.rbg coefficients used in equations (A8) and defined in
equations (A9)

CosC1r+++4Cp coefficients of longitudinal characteristic equation
with o, = 0 (eq. (A10)); defined in equations (Al12)

2D
Cp drag coefficient,
pSUg2

Cp,o drag coefficient at Cg = 0

aCpH :
CDa = 5&—, rad

BCB ]
CDSe = 56—e, rad

2L
Cy, 1ift coefficient,
DSUO2
CL,o lift coefficient at o =0
'

8CL :
C = —, rad™'-sec
Lq g !

acy,
Cy, = —, m']—sec

u du

BCL ]

CLG = 5&—, rad



CL'

cLSe

CLg

= —_, rad~1-sec

= ’ rad-!

= —, rad~!

= ’ rad“1—sec

2M
pitching-moment coefficient,

QSEUO2
pitching-moment coefficient at o = 0

BCm
= —-—, rad-'-sec
9q

5Cq

= —, m’1—sec
du

3Cp

= 5——, rad_1
o

ac
m
= —y rad~1-sec

oo

acy

= — rad=!
866

cy

= ’ rad-}
38y

ICp
= —_—, rad-1-sec
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2T

Cp thrust coefficient,
KJSUo2

oCrp iy
CTu = E, m '—secC
c mean aerodynamic chord, m
D = —

dt
D drag, N
- 1 3D
Dy = - -, sec™1

m du
Fx force in x-direction, N
Fy force in z-direction, N
g acceleration due to gravity, 9.80665 m-sec™2
h altitude, m
Iy moment of inertia about y-stability axis, kg—m2
T .
i,j,k unit vectors
i,j,k indices
Kgr..-,K7 airspeed control system gains
ky radius of gyration, m
L lift, N
M pitching moment, N-m

1 oM
Mq = — —, rad~l-sec-!

1 oM
My = — —, ml-gec”!

Iy Ju



1 M
= —_ rad"’-—sec'2
Iy oo

1 BM
= —_— -, rad~V -sec-!
IY aa

1 9M
= — ———, rad"1—sec'2
Iy 38g

mass, kg

period, sec

pitching velocity, rad-sec™!
wing area, m2

shear tolerance factor

thrust, N

r sec”

g1~
Q| @
el

time to double amplitude, sec

time to damp to half-amplitude, sec
forward velocity, m-sec™!
steady-state velocity, m-sec™!

perturbation velocity, m-sec™]

wind speed in x-direction in inertial coordinates, m-sec™!

du,,
wind shear gradient, ag—, sec™!

airspeed, m-sec™~!

airplane velocity vector and magnitude, m-sec™!
airplane velocity vector in body axes, m~sec™!

airplane acceleration vector in body axes, m-sec—2



command velocity, m-sec™)

resultant velocity, m-sec™!

wind velocity vector, m-sec~!

component of 35 in the z-direction (body axes), m-sec~!
speed of updrafts or downdrafts, m-sec™!

Aawy,

updraft-downdraft gradient, E__' sec™]
X

inertial axis system and coordinates

BFX
= - ——, sec™]
m du

—

oFx
—_— m-rad~l-sec™?2
m Jqo

|

3Fy

m 98,

—

m—rad‘L-sec‘2

1 9Fg
= -~ —, m-rad~l-sec~2
m 9gq

1 9Fg
—, sec”!
m du

1 9Fg
—, m-rad~l-gec~?2
m 30

7 9Fy
- —, m-rad~'-sec™2
m 9a

1 OFg
—_— m-rad~l-sec™2
m d8g

perturbation angle of attack, rad



Ogr trim angle of attack, rad

T total flight-path angle, Ty + v, rad

To steady-state flight-path angle, rad

Y perturbation flight-path angle, rad

Se elevator deflection, rad

S throttle deflection, rad

5 damping ratio

0 pitch angle, rad

£/n,C moving axis system for airplane

p air density at 0°C and 1 atm, 1.2929 kg-m~3
Op = 0y + Oy

Ou wind shear parameter for horizontal wind
Oy updraft-downdraft parameter

Tg engine time constant

w circular frequency, rad-sec™]

Wp undamped circular frequency, rad-sec™!
Subscripts:

tr trim

0 steady-state conditions

Dots over a symbol indicate derivatives with respect to time.
An arrow over a symbol indicates a vector. The symbol without the arrow
indicates magnitude.
ATRPLANES AND CONDITIONS OF STUDY
Airplanes Represented in Study

Two jet transport airplanes were represented in this study. One was a
large four-engine, long-range jet transport referred to as airplane A. The



other was a small twin-engine, medium-range jet transport referred to as air-
plane B. The aerodynamic and physical characteristics of both airplanes are

given in table I.

Airplanes A and B were used throughout the study. However, in order to
give more data on the shear tolerance factor, two additional four-jet transports
were used and are referred to as airplanes C and D. Because of the limited use
made of airplanes C and D, their aerodynamic and physical characteristics are
not presented.

Wind Conditions

Wind shear is an atmospheric phenomenon and varies with one or more atmo-
spheric parameters. In this paper wind shear was restricted to a variation of
the horizontal wind speed with altitude, as shown in figure 1. 1If an airplane
follows the flight path shown in figure 1 and penetrates the wind shear layer,
then the airplane will experience a positive wind shear; that is, a head wind
changes to a tail wind during transit of the airplane through the wind shear
layer. Work reported in references 3 and 4 shows that unstable conditions occur
if the wind gradient is large enough to produce a wind shear parameter greater
than 1. For the airplanes used in this study a gradient of 0.25 sec™! gives
a value of 0, 1in the range 1.5 to 2.0. This gradient has been measured in
thunderstorms. (See refs. 2 and 7.)

For both stability calculations and time histories, the wind was described
by the equation

Uy = Uy,0 + uy (Az)

where Az = z,_7 - 2z, with 2z, being the present value of z and z,-7 the
previous value of z. 1In stability calculations Uy, 0 is taken as zero, and
in time histories -6.10 m-sec~! head winds are negative. For Uy, 0 < 0,

UQ > 0, and 2z, < 2zp-1, this equation produces winds that provide a positive
wind shear situation with respect to the airplane.

v

In this study wind shear occurred in the altitude interval 106 H 2 56.

Equations of Motion

The equations of motion developed for stability calculations are derived
in appendix A and have Jy # 0 and 0Oy = 0. (A program for calculating the
characteristic equation is given in appendix B.) For the cases studied in this
investigation, 0y 1is taken as zero and equations (A4) become
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and are the equations used for the stability calculations. These equations form
the basis of program 1 of reference 6. This program and others in reference 6
were used to calculate all stability information.

Time histories of spatial motions of the aircraft were generated using the
three-degree-of-freedom nonlinear eguations of longitudinal motion (appendix A,
egs. (A13)). The effects of wind shear, updrafts, and downdrafts were incor-
porated in these equations, as suggested by Etkin (ref. 8).

Gera (ref. 9) has proposed a new set of equations for the analysis of wind
shear. These equations are restricted to the condition Tg = 0. Since the
present investigation considered only descending flight, the new equations pro-
posed in reference 9 were not applicable. It should be noted that for oy = 0
and Tg # 0, the equations of this report and those given in reference 9 are
the same.

ATIRPLANE RESPONSE TO WIND SHEAR

Results presented in reference 4 established the effect of wind shear on
the longitudinal stability characteristics of the airplane: Wind shear had
little or no effect on the short-period mode, and the long-period mode changed
from a lightly damped oscillation to two aperiodic modes, one of which became
unstable when 0O, > 1. A gradient of u; = 0.25 sec~] was used for the
present study. The corresponding values of ¢, were 2.0 for airplane A and
1.7 for airplane B. Table II contains the eigenvalues and stability parameters
of airplanes A and B for ujy = 0 (no shear) and u§, = 0.25 sec™!. The data
presented in table II confirm the results published in reference 4. These
results show that for the same gradient, airplane B takes 46 percent more time
to double amplitude than does airplane A. Material presented in figures 5
and 6 of reference 4 indicates that the approach speed of an airplane affects
its reaction to wind shear. Thus, the longer time required for airplane B to
double amplitude is not unexpected, as its still-air approach speed is
10.24 m-sec™! less than that of airplane A.

The wind shear data presented in table II for airplanes A and B are the
baseline cases for determining the effects of varying the u derivatives.
These cases are labeled "Basic airplane™ in tables III and 1IV.



Effect of Changes in Magnitude of Speed Derivatives
on Airplane Response

The speed derivatives Dy, Zy, My, and T, have been neglected in the
past because these derivatives are small and contribute little to the response
of the airplane. Because wind shear can introduce large speed changes, the
speed derivatives were varied to determine their effect on airplane response in
the presence of wind shear. Four values were used for each derivative: =zero,
the nominal value, 2 times the nominal value, and 4 times the nominal value.
The speed derivatives appear in the first column of equation (1), and because
the terms in this column as well as in the first row have little effect on the
short-period mode, variations in the speed derivatives should affect only the
long-period mode. Calculations showed that there was practically no effect on
the short-period mode. Consequently, no short-period mode data are reported.

Increasing D, and T, above the nominal value caused a slight increase
in the time required for airplane A to double amplitude. (See table III.)
Setting D, and T, equal to zero caused only a slight decrease in the time
to double amplitude. Variations_in M; and 2%, produced more significant
results than did variations in Dy and T,;. When the value of M;; was greater
than the nominal value, the time to double amplitude increased; and at 4 times
the nominal value of M,, the aperiodic mode turned into an unstable oscillation
with a time to double amplitude so large that control of the airplane should not
be affected. When 2Z,; was increased above the nominal value, the aperiodic
mode became less stable, an opposite result compared with variations of the
other speed derivatives. However, as Z,, became smaller than the nominal
value, the airplane became less unstable until at Z; = 0 a stable oscillation
with an 80~sec period replaced the aperiodic mode. The process of varying the
speed derivatives was repeated for airplane B and the results are presented in
table IV. A comparison of the results given in tables III and IV shows that
the trends noted for airplane A when the speed derivatives are varied are the
same for airplane B, with the exception of the results for M;. As M, is
increased, the aperiodic mode becomes a long-period stable oscillation; and at
4 times the nominal value of M, the oscillation becomes unstable.

The difference in response to the variations of M; was traced to the
signs of coefficients in the characteristic equation. The normalized form of
the longitudinal characteristic equation is

D4 + c303 + CyD2 + CD + Cp = 0

In the case of airplane A when wind shear is present, both Cy and C; are
negative, and increasing M, causes (g to become positive but causes Cj

to become more negative and introduces the unstable oscillation. In the case
of airplane B as M,; is increased, C; remains positive and a stable oscil-
lation occurs when M, is twice the nominal value. When this value is doubled,
an unstable oscillation with a time to double amplitude of about 42 sec is
present. This difference in response to the variations in M,; was traced to
the magnitude of Bu, which is larger for airplane B than for airplane A.
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Table V shows the effect on the response of airplane A of increasing M, when
ﬁu = 0.0844. 1In this case the unstable aperiodic response becomes a damped
oscillation at 4 times the nominal value of M;. Further increases in M,
would cause the oscillation to become unstable.

Because M, and Z,; have so great an influence on the airplane response
in wind shear, a further study of these two stability derivatives was made.
(See appendix C.) Figures 2 and 3 show the stable and unstable regions of M,
and Z,; as a function of the wind shear parameter 0.

The magnitude of the speed stability derivatives, especially M,; and 2,
has been shown to affect the response of the airplane in wind shear. However,
it is not known whether the presence of wind shear influenced the results
obtained or not. To obtain information on the influence of wind shear, the
speed stability derivatives were varied in the same manner as before but with
0y = Oy = 0. The results on the short-period mode were the same as before:
there was practically no effect on this mode. The results for the long-period
mode of airplane A are presented in table VI. A comparison of tables III
and VI clearly indicates that the responses obtained with wind shear present
are due to the interaction of the wind shear and the changes in the speed
derivatives. Similar results were obtained for airplane B.

Shear Tolerance Factor

The results presented so far show that the magnitudes of M, and 2, can
have an important effect on the response of the airplane in wind shear. A
relationship between these derivatives and My and Zg, called the wind shear
tolerance factor Spp, has been developed. (See appendix C.) The shear toler-
ance factor is dependent only on stability derivatives and is

My 2o,

If 0 < Spp < 1, the airplane is unstable in wind shear and the degree of insta-
bility becomes less as Spp > 1. If Sqp > 1, the airplane is stable in wind
shear.

The emphasis has been placed on varying the u derivatives, with the most
stress placed on M; and Z;;. As can be seen from the definition of Spp, both
My and Z; can be varied to achieve the same result as obtained from varying
M, and Z,; however, varying My and Zy causes changes to occur in the short-
period mode, which is practically unaffected by changes in 2,; and M.

The shear tolerance factor and the time to double amplitude are presented
in the following table for four airplanes and a wind gradient of 0.25 sec™1:

11



Airplane |Shear tolerance factor Sgp | Time to double amplitude

A 0.266 5.51
C .481 6.59
B .538 8.06
D . 957 28.78

Airplanes C and D were included to extend the calculations with the shear toler-
ance factor. Both are four-engine commercial jet airliners. Airplane C is
medium range; D is long range.

Spatial Motions

Typical controls-fixed spatial motions for o, I, h, and V for an
encounter with a strong wind shear (0, = 2.0) are presented in figure 4. These
motions were generated by integrating the longitudinal equations of motion (A13)
on a large digital computer. As can be seen, the principal characteristics of
the motion are an increasing angle of attack and a decreasing velocity. Since
' is related to 6 and o through T = 0 - o, the pitch angle 6 is also
decreasing. These component motions combine to cause a rapid loss of altitude,
and for the case shown, the airplane would impact the ground before recovery
to an equilibrium flight condition could take place.

Control in Wind Shear

The results presented in reference 4 show that two control systems, atti-
tude and airspeed, are required for adequate control during wind shear encoun-
ters. This was confirmed by results presented in reference 9. In a wind shear
encounter (fig. 4), the angle of attack o increases as the airspeed V
decreases. This type of variation of a and V and an inspection of the eigen-
vectors suggest that airspeed should be controlled. Airspeed may be controlled
by adjusting the engine throttles, drag-only speed brakes, wing flaps, and
finally spoilers. The foregoing systems may be used alone or in combinations.
Reference 10 discusses and jllustrates control systems using throttle position,
flaps, and drag-only speed brakes. To evaluate the speed control as a means
of smoothing the response of the airplane to wind shear, a control system very
similar to the analog throttle control system discussed in reference 4 was used.
Figure 5 is a block diagram of the airspeed control system used in this study.
The results are presented in figure 6 for several different values of the engine
time constants Tg, a constant that characterizes the time delay between calling
for a given thrust level and adhering to the desired level of thrust. Three
values of the engine time constant were used: 0.125, which would correspond
to thrust modulators (ref. 4); 2.50, which is a good approximation for the
engines used on airplanes A and B; and 3.75, a larger engine time constant than
would normally be encountered. For the smallest value of the engine time con-
stant, the response is the same as one would expect for an undisturbed airplane.
As the engine time constant increases, the response becomes more oscillatory and

12



less acceptable, as shown in figure 6. Although the response deteriorates, it
does not become aperiodic up to the maximum value used for the engine time
constant.

CONCLUDING REMARKS

An analytical study has been made of the longitudinal response of jet
transport airplanes to vertical variation of the horizontal winds. The wind
variation occurred between altitudes of 106 and 56 meters and changed a head
wind into a tail wind (positive wind shear). The flight condition was landing
approach.

When an airplane encounters wind shear, the ensuing response is a result
of the interaction between the airplane and its environment. This interaction
was investigated by varying the so-called u, or speed, stability derivatives.
These derivatives were selected for variation because they affect the long-
period mode, the mode that becomes unstable in wind shear, and have little
effect on the short-period mode. It was found that increasing the pitching-
moment derivative M,; or decreasing the vertical-force derivative 32, could
change an unstable flight situation to a stable one. 1In order for changes in
M, to be effective in restoring stability, it was found that the coefficient
of the first-power term of the characteristic equation must be positive. This
coefficient can be maintained greater than zero by increases in the drag
derivative Dy. Alternatively, a decrease in 2, as M, increases will
achieve the same result.

Another result of the investigation of the effects of varying the u
stability derivatives was the development of the shear tolerance factor, which
is a function of M_,;, Zy, and Zy, the derivative of vertical force with
respect to angle of attack «@. If the shear tolerance factor is less than or
equal to 1, the airplane will be unstable in positive wind shear; if the shear
tolerance factor is greater than 1, the airplane will be stable in positive wind
shear. The wind shear tolerance factor can be used to monitor changes in M,
and 3%, and thus assure the attainment of stable conditions.

Control of airplanes in wind is an important factor in wind shear research.
Previous studies have reported that a flight-path control system or a pitch-
attitude control system, as well as an airspeed control system was necessary
for adequate control in wind shear. Results presented in this paper show that
adequate control can be achieved through the use of an airspeed control system,
provided the engine time constant is small enough. No other control system is
required.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 14, 1980
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APPENDIX A

EQUATIONS OF MOTION

The axes systems for the equations derived in this report are shown in
sketches (a) and (b).

N e

Sketch (a)

The inertial axes X,y,2z are shown in sketch (a); a horizontal wind u
is flowing in the positive x-direction and a vertical wind wy,; is flowing in
the positive z-direction. 1Instead of being referenced to an inertial reference
frame, the airplane is referenced to the air-mass axes. The moving axes used
for the airplane are the &,N,{ system shown in sketch (b). These are wind
as well as stability axes for longitudinal motions, since the £-axis is
aligned with the single component airplane velocity. As shown in sketch (b),

I' is measured from the local horizontal to U. As was done in references ¢
and 9, it is assumed that shear effects in the moment egquation are negligible

and that [ =06 - a,

14



APPENDIX A

— — Local horizontal

Local
vertical

Sketch (b)

The inertial acceleration expressed in the moving-axis system £,n,% is

(o + )+ Bn % (Fa + %) (a1)

> > > > > > > » > . L
where Vp = 1U + j(0) + k(0), Vy = iy, + j(0) + kw, and w = i(0) + il + k(0).
The wind velocities u, and w, were taken as

Uy, = Uy,0 + uw(z)
and
Wy = Wy,0 + wy(x)

There is no loss of generality if uy,0 and wy, o are set equal to zero and
the wind velocities taken as

Uy, = Uy, (2)

15



and

Wy = ww(x)

APPENDIX A

Thus the wind vector can be written as

and the acceleration due to variation in the wind speed is

where

and

and

16

> |'+ I
Vi = UyZ WX
, duy,
u,, = ——
i
dz
, dww
Wy, = —
Y
ax
z =Usin [ + wy

Ucos I + uy

]
1

> > >
If the definitions of Vp, Wy, and V,;, are substituted into the expres-
sion for the acceleration (eq.

(A1)), the nonlinear equations can be written as



APPENDIX A

hd [] ] . ] .
U+uw,cosT - uUsinl cosT - wyu cos T sinT

]

- wguy sinT + g sin T = X
m
ugWy sin I' = ugU sin2 T + wU cos2 T' + wiu,, cos T g (a2)
. Fy,
-Tu-gcosT = —
n
. M
0 = —
Iy

S

The following assumptions were used in the linearization of equations (A2):

=Ty +v
U =Ug +u
Y=0~-o0

Here, © and o represent either the total angle of attack and pitch angle or
perturbations from a trim condition. The latter use occurs only in linear
equations such as (A8B).

The wind shear parameter was also introduced. This parameter is a dimen~

sionless acceleration whose magnitude is proportional to the wind gradient. The
Uou‘:, Uow‘:,
, and Oy = ———, A value greater than 1 for Oy or 0y
9

would represent a severe wind shear, as unstable roots appear in the long-period
mode. The linearization process given in reference 8 was followed for the
linearization or equations (A2). The resulting linear equations of motion arel

parameter O, =

IThe variables x and 2z that appear in the definition of u, and wy
transform into § and {; and since xqg = Zg=g, both &3 and g are equal
to zero.
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APPENDIX A

d gOq r ( r r ) 920ugw Fy W
— - —— sin 2 u + g{cos - Om cos 2 Y+ —— & = —
at  2ug 0 o~ T 0 0o2 m
g d
- -—(Ou sin2 Ty - 0, cos? T0> u+ |-Ug — + g(sin Tg - 0p sin? FO) Y
Ug dt
g20u0w Fg
+ E = —
U02 m
a2 M
—(y +a) = —
ac? Iy
/
The steady-state parts of equations (A3) are
Fx,0 I
~-g0p sin g cos Tg + g sin Ty = ——
m
Fz,0
-gop sin2 Ty - 0y ~ g cos g = - > (n4)
Mo
0 = —
I
¥ J

& (a3)

These last equations are used to compute the trim values of ¢ and the thrust.

Equations (A3) and (A4) are complete except for the definition of aero-
dynamic forces and moments. In developing these forces and moments it should
be remembered that they are functions of the speed of the airplane with respect

to the air mass, so that U = Ug + u. Here Ug is the still-air approach

speed, and u is the small speed deviation from Ug. The lift force will be

worked out in detail. Before substitution of Uy + u for U, the force
has the form

psu?
2

QCL,o + Cr 0 + Crad + Crqd * CLGeae)
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APPENDIX A

The terms in parentheses represent the 1lift coefficient of the airplane and,
except for Cp,o (the 1lift coefficient at o = 0), represent the effect of
angular motions on the lift. The effect of speed changes, since it is con-
tained in the dynamic pressure. When Ug + u is substituted for U and
Oy + @ is substituted for o, the expression for 1lift becomes

PS8 (Ug2 + 2Ugu + u?)

[%L,o + Cp, (@gr + @) + Crio + Cqu + CL6e6§] .

where u? 1is considered a second-order term and, therefore, can be neglected.

pSUg2

is the 1lift required to trim the airplane,
. pSUp2
or Fgz g 1in equations (A4), and (CLaa + Crio + Cqu + CL6e69>__E—_ is the

The term (CL,O + CLaatr>

lift due to angular motions from the trim state. The effect of a change in

forward speed is given by CpPSUgu. Thus, the total 1lift force Fy for equa-
tions (A3) is

pSUQG2 . pSug2 pSUg2 pSUG2
+ CL&G + Cr. g + CLgeée

FZ = - CLpSUOU + CLCXa (A5)

Lq

The longitudinal aerodynamic forces and the pitching moment can be treated
in a similar manner. Thus,

PSUQ 2 pSUG2
= -l CR A~y + CRQ _ )+ A6
Fy CDQSUO + CDaa CDGe(Se 2 Tyu ( )
where
2
_ _ CL,tr _ _
CD = CD,O + + CDaa + CD(Sese
TA

and T, is the change in engine thrust due to a change of forward speed. The
aerodynamic pitching moment is given by
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APPENDIX A
pScug2 . PScug? pScUg2

M = | CyPScUgu + Cp 0 ——;——— + Cpgd — Cmgd - (A7)

where

Cp = l:cm,o + (Cm0‘>tratr + Cp® + Cpg0 + cmqq + CmGeGe:,

and Cm, o is. the pitching-moment coefficient for & = 0. Equations (AS5), (A6),
and (A8) are substituted into equations (A3) to obtain the linearized equations
of motion that are used for stability studies. Note that in this substitution

u = §§ w = S3-5, and a = L QE; the equations then take the form

4

at at Ug dt
FDZ + ajD + ay a3D ay (& ’Vb] b2—
asD agD? + a7D + ag agbD + ajg| |l | = | b3 by FeGi] (A8)
N ar1D ajy 2D3 + a3 3D2 + aygb D2 + aj 5D_j YJ bg bGJ
where
gor Cpesug  ©r,PSUg
aj = - | — sin 2T - + (A9a)
2Uq m m
920u0w
a, = — (A9Db)
Uo
- 2
CDGDSUO
az = ——————— (A9¢c)
2mU0
ag = gl(cos I'y = Op cos 2[y) (A94)
pSU
g 0
= 12
= - |—|o I'g -0y - Cp,. —
ag U0< T Sin 0 w) Ly - (A9e)

20



a6

a7 =

ag

210

ann =

a12 =

ais =

APPENDIX A

pSU02
cr. +C -)
( Lq Lo 2mU0

pSUO2

C
Lo 2mUg

az

QSUO2
- 1U0g - CLq o

= g(sin Ty - op sin 2T)

CmuDSEUO

Iy

-

pScUg2
Cm. + Cnm
< Mg~ "Ma)a1e0,

QSEUoz

Moy ZlyUO

pScug?

" g 214Ug

PSUG2
Dée 2m

(A9f)

(A9qg)

(A9h)

(A91i)

(A93)

(A9k)

(A91)

(A9m)

(A9n)

(A90)

(A9p)
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pSUg2
b, = C (A9q)
2 T(ST 2m
pSUg2
by =~ C (A9r)
3 L§e om
by = 0 (A9s)
DSEUO2
be = C —_— (A9t)
pSEUoz
(A9u)

If o, =0y = 0, these equations reduce to the usual form of the linear longi-
tudinal equations of motion.

The characteristic equation of the system described by equations (A8) is
obtained by expanding the determinant of the 3 x 3 matrix that occurs on the
left side of this equation. The general form of the characteristic equation
is

CgD® + CgD> + Cc4D% + C3D3 + CoD2 + C1D + Cp = 0 (A10)

The constant term Cg is equal to 0, so that equation (A10) is a sixth-degree
equation with a zero root. Equation (A10) was written

CgD® + C5p? + ¢4D3 + C3p2 + ¢y = 0 (A11)

for programming purposes. The expressions for the coefficients of the charac-
teristic equation are

Ce = ag — aj2ag (A12a)

Cs aj(ag - ajzag) + (a7 + ajsag - ajzag - ajgaiz) (A12b)
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Cq4 = a1(a7 + ajsag - ajzag - ajpajz) + (ag + ajsay - ajgag - ajsajq)
+ ag (as - a]zag) - azag + asasaj2 (A12c)
C3 = aj(ag + ajsay - ajgag - ajzajg) + (ajsag - ajgayg)

+ az(ay + ajgag - ajzag - ajpajz) - azlajsag - ajjag)

+ ag(ayjzas ~ ajjag) (A124)

C2 = aj(ajsag - ajgajg) + az(ag + ajsay - ajgag - ajzajg)

+ azajjayg + aglasajg - ajjay) (A12e)
Ci = az(ajsag - ajgajp) - agayjag (A12f)
Cop=0 (A129)

If Oy and/or Oy = 0, the Cy coefficient becomes 0, and the charac-
teristic equation reduces to a quartic. In this case the C; coefficient
corresponds to the C; coefficient obtained from equations (1).

An HP-67 program that calculates the coefficients of the 3 x 3 matrix
(egs. (A8)) and the coefficients of the characteristic equation (egs. (A10)
and (A11)) is given in appendix B.

The equations of motion presented in this appendix model the condition in
which an airplane is subjected to a combination of vertical wind shear, updrafts,

gzouowg 920uowC
and downdrafts and contain wind interaction terms ———— and ——— not
Uoz 002

present in the previous formulation of this problem. If either g, or Oy, is
set to zero, these equations reduce to equations given in reference 4 when the
same parameter is set equal to zero. 1If the wind interaction terms are neglected
and O, and 0, are not equal to zero, the resulting equations will predict a
larger instability (a shorter time to double amplitude) than equations (A8).

Equations (AB) are approximate rather than exact equations. The inexact-
ness occurs because of the assumption that I =0 -~ a. The angle T, defined
in sketch (b), is not the traditional I because it is not inertial. The
traditional I, which will be called 1, can be obtained by applying the cor-
rection Iy =T - €4, where € is given by

-uy sin I' = wy cos T

€a = tan™! -
U-u,cos +w sinT
W
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Since €, can be considered a small angle, it can be set equal to the
argument of the inverse tangent. This correction and its first and second
derivatives would be applied to equations (A3). However, equations (A3) were
used with wy, equal to zero; thus, the correction would be

u, sin T

U-u, cos T

which approaches zero as I approaches zero. The corrections for the first

r
and second derivatives are proportional to — and are smaller corrections

u2
than €4,. Because the corrections and [ are small, no corrections were
applied when equations (A8) were used to calculate the stability parameters.
If updrafts and downdrafts had been included in the analysis, corrections to
I' would have been necessary. Equations (A8) were not used to compute time
histories.

The six-degree-of-freedom equations of motion for principal body axes are
> > > >
m(VB + w X VB) =F
+ > > >
H4+4wxH=M

where E = Ixxp + Iyyq + Iggr; ; and ﬁ are total force and moment vectors;
P, d, r are the angular velocities; and Ij; are the products of inertia.
These equations may be separated into lateral and longitudinal equations of
motion; the latter are

. Fx
u+gw=-4g sin 0 + —
m
. Fz
Ww=-qu=g cos 0 + — (A13)
m

where u, w, ¢q, and © are total values, not perturbations and Fy, Fg,
and M are the total aerodynamic forces and moments acting on the airplane.
Equations (A13) were used to compute the time histories presented in this
report. Wind shear was accounted for by making the wind component of the
airspeed vector altitude dependent.
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PROGRAM FOR CALCULATING THE CHARACTERISTIC EQUATION
OF LONGITUDINAL MOTION

This program calculates the coefficients of the 3 x 3 matrix in equa-
tions (A8) using the expressions given in equations (A9). After the calcu-
lation of these coefficients has been completed, equations (A12) are used to
calculate the coefficients of the characteristic equation (A10) under certain
circumstances. The characteristic equation may be fifth order, so that a
routine to extract the real root of a quintic is included in the program.
Programs 4 and 5 of reference 6 can be used to complete the calculation of the
roots of the characteristic equation and to determine the stability parameters.

The two-card program that follows is an improved version of program 1 of

reference 6. This program may be checked by using the checks case for pro-
gram 1 of reference 6.
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Step

001

010

020

030

040

APPENDIX B

Card 1

Key Entry Comments Step
LBLA

RCLS8

STO+7

STO%9 050
RCLO

=2

CHS

STO< (i)

RCL7

RCL6

SIN

«x2

X

RCL8 060
STOO0

RCL6

COSs

STO8

+

RCL4

X

RCLB

RCL2 070
X

RCL5

X

RCL]

STOE

RCL5

X

M LI S

080
STOx3

STOB

< Cr,

P*S

STOS

RCLD

RCL1

T Oy

RCL6 090
X

STO+9

Key Entry

RCL5
%2

RCLC

-
)

. =

STO+4
RCL2
STO+3
RCLS8
STO+7
RCLE
STOx4
STOx5
RCLA
X
STOx9
RCLB
STOx (i)
STOx0
STOx1
STOx 2
STOx3
RCLA
STOx6
STOx7
STOx8
P*S
RCL8
RCL6
2

X

Cos
RCL7
STOx8

STOA
RCL6
SIN
STO%8
RCL8

RCL4

Comments



Step

100

120

130

140

APPENDIX B

Key Entry Comments Step
STOx (i)

X

STOB

RCL4

RCL5

STOx8

STOx0 150
STOx9

RCL9

X

STOC

RCL3

RCLS8

+

RCLO

RCL5

P*S 160
CHS

STO+2

CHS

STO=0

STOH1

STO+3

STO+6

STO=7

1/x

P*S 170
STO6

P*S

RY

STO-5

RY

STO-4

1

0

STOI1

RCL3 180
P*S

RCL6

Prs

RCL2

STOD
P*s
STO5 Cé6

PrS 190
RCL4

Key Entry Comments
RCL1

RCL8

RCL3

X

+
RCL2
RCL7
x
RCLB
P*S
RCL6

pPrs
x

STOE

+

STO (i) C5
ISz

RCLD

RCLC

RCLE
RCL4

RCLO
RCL5

RCLA
RCL5
p*s

RCL6

P*S

RCLC
RCL8
RCL!

RCL6
RCL2

RCL7
RCLB
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Step Rey Entry Comnments
STOD
+
STO(1) c4
RTN




APPENDIX B

Storage Map for Card 1

(i) Address Register Initial storage Output storage
0 Rg ky bg
1 Rj m by
2 Ry g
3 R3 Cr,

4 Ry g

5 Rg Up bg

6 Rg T

7 Ry gy

8 Rg Oy

9 Rg Oy
10 Sp Cﬁa aj
11 S1 Cr, a7
12 Sy Cry ag
13 S3 CLd ag
14 S4 Ch, o aj
15 Sg 0 ag
16 Sg Crng, aja
17 Sy Cmd a3
18 Sg Cmg ajs
19 S9 Cm,o alg
20 Rp c ag
21 Rp S aip
22 Re A ap, ag
23 Rp CL,o
24 Rg 0

25 I 20 a2
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Step

601

010

020

030

040

AP

Key Entry Comments

PENDIX B

Card 2

Step

050

060

070

080

090

Key Entry

+

RCLO
RCL9
RCLB

STO (i)
RCLC
RCLE

x
RCLA
RCL9

LBLB

Comments

G



Step

100

120

130

140

Key Entry

RCLO
STOA
RCL]
STOB
RCL2
STOC
RCL3
STOD
RCL4
STOE
0
STO7
FIX
RCLA

WO+ o n

STOS
STO6
GSBb
STO8

STO+6
LBLO

STO+7
GSBb
STO9

Pause
x=0
GOTOI1
RCL6
RCL5
RCL6
STO5

RCL8
RCL9
STO8

RCLS8

APPENDIX B

Comments

Step

150

160

170

180

Key Entry

x
STO6
GOTO0
LBL1
RCL7

WO oy

CHS
RCL6

RCL6

RTN
LBLb

STOI

GSBc
STOO
GSBcC
STO1
GSBc
STO2
GSBc
STO3

GSBc
STO4
RTN

LBLcC
RCL6

RCL (i)

ISz
RTN

Comments
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Storage Map for Card 2

(i) Address Register Initial storage Output Output
LBLAZ LBLB

0 Ry The initial Csg ds
1 Ry storage for Cy do
2 Roy card 2 LBIA C3 dq
3 R3 is the Cy dg
4 Ry output of Cy
5 Rg card 1. Ce¢
6 Rg
7 Ry
8 Rg
9 Rg

10 Sg as

11 S1 az

12 8y ag

13 S3 ag

14 Sy aq

15 Sg ag

16 Sg aig

17 S ais

18 Sg aig

19 Sg ajj

20 Rp ay

21 Rp aig

22 Re ap, ag

23 Rp

24 RE a2

25 I

3At end of label A, the numeral 4 or 5 is displayed in x; 5 indicates
a quintic and 4 a quartic. If 5 is displayed, push B; if 4, insert quartic

program and proceed.
Note: 1In addition to the stored output, the stack contains the

following information:

Stack register

T number of iterations to obtain root

z time to halve or double amplitude

y root of quintic equation

X 5 indicates that a real root of a fifth-order equation

has been found
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EXPRESSIONS FOR Cg = 0

The nonnormalized characteristic equation of longitudinal motion is
cgD? + C3p3 + CoD2 + CiD +Co =0 (c1)

When wind shear is introduced in the airplane stability and control problem,

the coefficients affected most are Cq7 and Cg. The coefficient Cg is the
dominant one. For negative wind shear, the airplane remains stable; however,
for positive wind shear, the airplane becomes unstable when the wind shear
parameter g, exceeds 1. (See ref. 4.) The expression for Cg (when Oy = 0)
is

ajg(azajq] - ajajg) + ag(asayg - ajayy) = Cq (C2)

If Cp 1is set equal to zero, equation (C2) may be solved for Z,; and M_,. The
expression for Z,; that satisfies Cg =0 is

a,37a71 - ajglazany - a1ay)  Pu
Zy = . + — sin“ Ty (C3)
agafi] U0

and a similar expression can be obtained for M,;. Equation (C3) was used to
make figure 2.

If equation (C2) is solved for the ratio — = —, the following expres-

sion results:

as
a - — a5
a1y aip
_——— (C4)
a4 a4
a3 - —_— a7
alg
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Equation (C4) may be written in the form

as
azy - — a7y
an alo
— | =1 (C5)
a4 ag
a; - — ag
aio

If the equality of equation (C5) is fulfilled, Cp = 0. If the left-hand side
of equation (C5) is less than zero, unstable conditions exist; if greater than
zero, the airplane is stable. The matrix elements a7 and a3 may be a
negligible contribution to the term in parentheses of equation (C5). If aj

ag
and a3 are dropped, the ratio —— in the parenthetical term cancels, and
a1o
equation (C5) may be written as
an ay
—_— — & ] (C6)
a14 ag

If a; and a3 are retained, the value in parentheses for airplane A is
0.00466; if dropped, the value is 0.00463. This small difference justifies
dropping a7 and aj3. Except for ag, all the a-terms in equation (C6) are
functions solely of the stability derivatives. Wind shear is thus introduced

g
through the inclusion of the term - 6— Op sin? I'o -0y in 2,. For reason-
0
able values of Ty (that is, -0.17453 = FO $ 0.17453) and Oy = 0, the

g
expression - ——<0T sin2 Ty - °w> will make a negligible contribution to ag
Uo

because of sin? I'y in the expression. For airplane A with 0y = 0,

g = -0.05236 rad, and 0Oy = 2.0, this term has a value of -0.0007; and since

Z, 1is 0.2553665, the wind shear term may be safely dropped when 0O, = 0. If

Ow 1is nonzero, the wind shear term for OJ, 1is Oy g/Ug and, unless Oy is
alyl az

very small, may not be neglectable with respect to 32,. The term — — is
a4 as

called the wind shear tolerance factor Spp and may be written as
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MyZg
Myas

or

MyZo
MyZy

APPENDIX C

(Ow = 0)

S/

(C7)

The interpretation of the wind shear tolerance factor is discussed in the text.
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TABLE I.- PHYSICAL AND AERODYNAMIC CHARACTERISTICS

FOR AIRPLANES USED IN THIS STUDY

[é constant air density of 1.2929 kg-m‘3 was]

used for all calculations

Characteristic

Airplane A

Airplane B

ky, M . v s o o «
Cr Mov v v o o o @
S, m2 e s s e s s
A . 4 4 s e e e

m, kg . . . .« . .

g, m-sec? . . . .

Up, m-sec™! . . .
I'yrad . . . . ..
Cpyr ra@a”l . . . .
Cryr rad™! . . .
CLé e e e e e e
CLyr rad”'-sec .

CD,0 » » » » = = =
Crgy # rad~l-sec . .
Cmé e e e e e e
Crngy # rad@”l . . ..
Cm,0 « « = o + +

cTu' ml-sec . . .
CL5e' rad”! . ..
Chger rad™l . . .

Cmse

10.463784

7.0104

267.1

7.03

90909.1

9.80665

0 to 2.0

0

77.12

-0.05236

0.529

4.87

0.283

0.0889

0.038

-0.241

-0.707

-1.115

-0.015

-0.00025

0.23302

0.01387

-1.017

40916.87

9.80665

0 to 1.7049

0

66.88

-0.05236

0.9168

6.59

0.2208

0.20893

0.13778

-0.0656

-0.6884

-1.369

-0.14

-0.0055409

0.46413
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TABLE II.—- RESPONSE OF AIRPLANES A AND B TO WIND SHEAR

[Tg = 0.0524 rad]

Mode Root t1/2s sec | tp, sec | P, seC |Wp, rad-sec™! Tp Remarks

Airplane A, Ug = 77.12 m-sec™ !

Short-period |-0.6990 + 0.80611 0.991 —_—— 7.79 1.07 0.66 [No wind shear

Long-period |(-0.00648 + 0.1291i 106.97 -—— 48.66 .129 .050 |No wind shear

Short-period |-0.6933 * 0.7939i .995 —— 7.92 1.054 .66 |uy, = 0.25 sec™!}

Long-period |-0.1373, 0.1258 | ————=—e 5.51 |~—=== | = —mmem | mmmee uy = 0.25 sec™!
Airplane B, Uy = 66.88 m-sec™)

Short-period |-0.6082 * (.9882i 1.14 —_— 6.36 1.716 0.52 |No wind shear

Long-period |-0.0298 % 0.12021 23.33 ——— 52.36 a2 .24 |No wind shear

Short-period |-0.6074 * 0.97211i 1.14 —-— 6.46 1.15 .53 |ug =0.25 sec™!

Long-per iod -0.1352, 0.0863 | —==——- 8.06 |~-———- ———— -—— uy = 0.25 sec™!
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TABLE III.- EFFECT OF VARYING THE u-STABILITY DERIVATIVES ON THE

[Ug = 77.12 m-sec™];

uy = 0.25 sec'];

LONG-PERIOD MODE OF AIRPLANE A

Ty = -0.0524]

Parameter varied Root ty/2+ sec | tp, sec | P, sec |w,, rad-sec 1 o)) Remarks
Effect of varying the magnitude of Eu
- -
Dy =0 -0.1253, 0.1354 | ———=—v 5.12 | mmmmmm | mmmeme | meeeee
Du = 0.0212 -0.1373, 0.1258 | ====—- 5.51 { ====== | Basic airplane
D, = 0.0424 -0.1502, 0.1171 | =—===== 5.92 | —=—=== |  —m——e- R
D, = 0.0848 -0.1784, 0.1021 | —-—==—- 6.79 | ——==== i  —emme= meee———
l
Effect of varying the magnitude of T,
Ty = 0 -0.1356, 0.1271 | ==m=-- 5.45 | —m=m=- T -
T, = -0.00281 -0.1373, 0.1258 | ———=— 5.51 | ===mmm | wmmmee | eeee—— ' Basic airplane’
Ty = -0.00562 -0.1389, 0.1246 | -—-————- 5.56 |[====—= |  meme—ee e
Ty = -0.01124 -0.1423, 0.1223 | -=———- 5.67 | ====== | —===—== —meeea
Effect of varying the magnitude of M,
M, =0 -0.1666, 0.1425 | ——-—=—- 4.86 | —m=-m= |  —mmmme J—
M,; = 0.000997 -0.1373, 0.1258 | ——=—-- 5.51 C m———— Basic airplane
M, = 0.00199 ~0.1040, 0.71050 | ---——- 6.60 | ———=—— | —m————  —————
M, = 0.00399 0.0125 + 0.0356i | =—==——- 55.35 | 176.67 : 0.0377 -0.31 ;
Effect of varying the magnitude of 13,
Zy =0 -0.00639 + 0.0782i| 108.42 | ~—=-=o 80.34 0.0785 0.0815
2y = 0.255 -0.1373, 0.1258 | =—==-—- 5.51 | =mmmm= | mmmmee e Basic airplane
Z, = 0.502 -0.2103, 0.1970 | ==m--- 3.52 | m=m==m | mmmmee s
Z, = 1.021 -0.3186, 0.2959 E ------ 2.38 | —————= | —mmmmm mmeeee




ov

TABLE IV.~ EFFECT OF VARYING THE u-STABILITY DERIVATIVES ON

LONG-PERIOD MODE OF AIRPLANE B

[Ug = 66.88 m-sec™!; uy = 0.25 sec™!; Tg = -0.0524 rad]
Parameter varied Root t1/2+ sec | tp, sec | P, sec [Wp, rad-sec™) Zp Remarks l
Effect of varying the magnitude of Bu l
Dy = o -0.1090, 0.1023 |  ~——m=m 6.79 | —mmmm= | mmmmmm | mmeee- f
Dy = 0.0427 -0.1352, 0.0863 | ---—- 8.06 | =—==== |  =mm—mm | —meee- Basic airplane ‘l
Pu = 0-0955 _091662' 0-0740 ————— 9.36 __________________ !
D, = 0.1709 -0.2365, 0.0573 | —~—~- 12.16 | ====== |  —==-o= oo j
|
Effect of varying the magnitude of T, ’
i
Ty = 0 -0.1122, 0.0993 | —-——- 7.00 | =m==== |  mm——m= | e i
Ty = -0.0356 -0.1352, 0.0863 |  ~———— 8.06 | ====—= |  —m=mm— | mme——e Basic airplane |
Ty = -0.0713 -0.1608, 0.0758 | ---=- 9.12 | === |  —=mm—— | e
Ty = -0.1426  :-0.2182, 0.0607 ————- 11.36 | =~==== |  ====== | ——==—-
Effect of varying the magnitude of M, !
Mu = 0 -0.20]2, 001236 _____ 5-59 ------------------ i
M, = 0.0039 -0.1352, 0.0863 | ——--—- 8.06 | —————= |  ——m=-- | —mmeee Basic airplane
M, = 0.0078 -0.0104 + 0.03211 66.63 | —---——- 195.74 0.034 0.308
My = 0.1425 0.0166 * 0.1590i |  ~—=-- 41.75 39.52 0.160 -.1038 |
| Effect of varying the magnitude of 7% .
I m———— Bt it liad -
1 2y =0 -0.0247 + 0.10341 27.72 -—--- | 254.38 0.106 0.232 ‘
Z, = 0.2942 -0.1352, 0.0863 |  ——m—— 8.06 | ———=== | emmmem | e Basic airplane
Z, = 0.5884 -0.2155, 0.1660 |  —=——= 4,17 | m=mmmm | mmmmem | mmeee—
Zy = 1.1769 -0.3245, 0.2704 | —---—- 2.57 | ====== | mmm——m ] e
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TABLE V.- LONGITUDINAL RESPONSE, AIRPLANE A

[D, = 0.0844]

Parameter varied Root t1/2, sec | tp, seci P, sec| wp, rad-sec™1 Cp |Remarks
| Effect of varying the magnitude of M,
[ '

M; =0 -0.2083, 0.1787 | —--=- 5.84 | =——-—~]  —=———- , m————

M, = 0.000997 |-0.1784, 0.1021 | ---—- 6.79 | ==-===]  ==e——- T

M, = 0.00199 -0.1949, 0.0817 | —=--- 8,59 ' =m-mme| mmmmmeomeee

M,; = 0.00399 -0.0189 £ 0.0134i 36.59 ~=== ' 467.17 0.0232 | 0.815
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TABLE VI.- EFFECT OF VARYING THE u-STABILITY DERIVATIVES ON

LONG-PERIOD MODE OF AIRPLANE A

[Ug = 77.12 m-sec™1; uy = 0.0 sec™!; T = -0.0524 rad]
Parameter varied Root t1/2, sec | tp, sec | P, sec | wp, rad-sec~! Cp Remarks
Effect of varying the magnitude of D,
@u =0 -0.0039 + 0.1288i | —-==~-— -177.17 | 48.76 0.1289 -0.0303
' Dy = 0.0211 -0.0065 * 0.1291i 106.97 | ==————- 48.66 .1293 .050 |Basic airplane |
E bu = 0.0422 -0.0169 + 0.12961 41.09 | ====—— 48.88 . 1296 . 1301 !
: 6u = 0.0844 -0.0376 + 0.12481 18.41 | —=—=——- ! 50.33 .1304 .289 3
| Effect of varying the magnitude of T,
Ty = 0 -0.00510 * 0.12911 | 135.96 | —~===——- 48.66 0.1292 0.039
Ty = —-0.00281 |-0.00648 + 0.1291i | 106.97 | ===—=—= 48.66 .1293 .050 |Basic airplane
. Ty = -0.00562 |-0.00786 + 0.12911 88.17 | ———==—w 48.67 .1293 .061
. Ty = -0.01124 1-0.0106 * 0.1290i 65.24 | ~==e=e— 48,71 .1294 .082
i —
| Effect of varying the magnitude of M,
My =0 -0.00543 * 0.1507i 127.57 | ===wee- 41.71 0.1508 0.036
My = 0.000977 1-0.00648 + 0.1291i | 106.97 | —————-- 48.66 .1293 .050 | Basic airplane
M; = 0.00195 {=-0.00749 * 0.1033i 92.55 | —=—————- 60.81 .1036 .072
M,; = 0.00391 :=-0.0443, 0.0255 | ——==—- 27,18 | —==== | e e
Effect of varying the magnitude of 137,
Zy =0 -0.0938, -C.0631 | —————- 10.98 | ——=== |  ———mee | mmea _
%2, = 0.2540 -0.00648 £ 0.12911 106.97 | =====— 48.66 .1293 0.050 Basic airplane
Zy = 0.5079 0.00211 * 0.19691i | =—=~=-—- 328.68 | 31.91 .1969 -.011
Z, = 1.016 0.0185 + 0.2893i | =———— 37.45) 22.10 . 2850 -.064
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Figure 1.- Wind shear.
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Figure 4.- Response of airplane to wind shear with winds
of -6.10 m-sec~!. Gradient ul = 0.25 sec1.
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